求不大于给定正整数n的所有整数的阶乘之和,可以通过以下几种方法实现:
方法一:使用循环
```c
include
int main() {
int n, i, sum = 0;
scanf("%d", &n);
for (i = 1; i <= n; i++) {
int factorial = 1;
for (int j = 1; j <= i; j++) {
factorial *= j;
}
sum += factorial;
}
printf("%d\n", sum);
return 0;
}
```
方法二:使用递归
```c
include
int factorial(int n) {
if (n == 0) return 1;
return n * factorial(n - 1);
}
int main() {
int n;
scanf("%d", &n);
int sum = 0;
for (int i = 1; i <= n; i++) {
sum += factorial(i);
}
printf("%d\n", sum);
return 0;
}
```
方法三:使用数学公式
阶乘之和可以通过以下数学公式直接计算:
\[ S = \sum_{i=1}^{n} i! = (n + 1)! - 1 \]
```c
include
int main() {
int n;
scanf("%d", &n);
int sum = (n + 1) * n / 2; // (n + 1)! - 1 = n! + n! + ... + 2! + 1! = n(n + 1)/2
printf("%d\n", sum);
return 0;
}
```
方法四:动态规划
```c
include include int main() { int n; scanf("%d", &n); int *factorial = (int *)malloc((n + 1) * sizeof(int)); factorial = 1; for (int i = 1; i <= n; i++) { factorial[i] = factorial[i - 1] * i; } int sum = 0; for (int i = 1; i <= n; i++) { sum += factorial[i]; } free(factorial); printf("%d\n", sum); return 0; } ``` 总结 以上方法都可以实现求阶乘之和的功能,选择哪种方法取决于具体需求和编程习惯。循环方法简单直观,递归方法可以锻炼递归思想,数学公式方法适用于快速计算,动态规划方法可以优化内存使用。