在编程中,求根公式通常用于解决二次方程 ax^2 + bx + c = 0。其解可以通过以下公式得到:
\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
Python 示例
```python
import math
def solve_quadratic(a, b, c):
delta = b2 - 4*a*c
if delta < 0:
return "方程无实根"
elif delta == 0:
return -b / (2*a)
else:
x1 = (-b + math.sqrt(delta)) / (2*a)
x2 = (-b - math.sqrt(delta)) / (2*a)
return x1, x2
获取用户输入的参数
a = float(input("请输入二次项系数:"))
b = float(input("请输入一次项系数:"))
c = float(input("请输入常数项:"))
计算求根公式
result = solve_quadratic(a, b, c)
print(result)
```
Java 示例
```java
import java.lang.Math;
public class Main {
public static double solveQuadratic(double a, double b, double c) {
double delta = b*b - 4*a*c;
if (delta < 0) {
return Double.NaN; // 方程无实根
} else if (delta == 0) {
return -b / (2*a);
} else {
return (-b + Math.sqrt(delta)) / (2*a);
}
}
public static void main(String[] args) {
double a = 1, b = 4, c = 3;
double result = solveQuadratic(a, b, c);
System.out.println("解为: " + result);
}
}
```
C++ 示例
```cpp
include include std::pair double delta = b*b - 4*a*c; if (delta < 0) { return {std::numeric_limits } else if (delta == 0) { return {-b / (2*a), -b / (2*a)}; } else { double x1 = (-b + std::sqrt(delta)) / (2*a); double x2 = (-b - std::sqrt(delta)) / (2*a); return {x1, x2}; } } int main() { double a = 1, b = 4, c = 3; auto result = solveQuadratic(a, b, c); std::cout << "解为: " << result.first << " " << result.second << std::endl; return 0; } ``` JavaScript 示例 ```javascript function solveQuadratic(a, b, c) { const delta = b*b - 4*a*c; if (delta < 0) { return "方程无实根"; } else if (delta === 0) { return -b / (2*a); } else { const x1 = (-b + Math.sqrt(delta)) / (2*a); const x2 = (-b - Math.sqrt(delta)) / (2*a); return [x1, x2]; } } // 获取用户输入的参数 const a = parseFloat(prompt("请输入二次项系数:")); const b = parseFloat(prompt("请输入一次项系数:")); const c = parseFloat(prompt("请输入常数项:")); // 计算求根公式 const result = solveQuadratic(a, b, c); console.log(result); ``` 这些示例展示了如何在不同编程语言中实现求根公式。你可以根据具体需求选择合适的编程语言和库来实现这一功能。